
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 4, AUGUST 2001 537

A Multiobjective Evolutionary Algorithm Toolbox
for Computer-Aided Multiobjective Optimization

K. C. Tan, Member, IEEE, Tong H. Lee, Member, IEEE, D. Khoo, and E. F. Khor

Abstract—This paper presents an interactive graphical user
interface (GUI) based multiobjective evolutionary algorithm
(MOEA) toolbox for effective computer-aided multiobjective
(MO) optimization. Without the need of aggregating multiple
criteria into a compromise function, it incorporates the concept of
Pareto’s optimality to evolve a family of nondominated solutions
distributing along the tradeoffs uniformly. The toolbox is also
designed with many useful features such as the goal and priority
settings to provide better support for decision-making in MO
optimization, dynamic population size that is computed adaptively
according to the online discovered Pareto-front, soft/hard goal
settings for constraint handlings, multiple goals specification for
logical “AND”/“OR” operation, adaptive niching scheme for uni-
form population distribution, and a useful convergence represen-
tation for MO optimization. The MOEA toolbox is freely available
for download at http://vlab.ee.nus.edu.sg/~kctan/moea.htm, which
is ready for immediate use with minimal knowledge needed in
evolutionary computing. To use the toolbox, the user merely needs
to provide a simple “model” file that specifies the objective func-
tion corresponding to his/her particular optimization problem.
Other aspects like decision variable settings, optimization process
monitoring and graphical results analysis can be performed easily
through the embedded GUIs in the toolbox. The effectiveness
and applications of the toolbox are illustrated via the design
optimization problem of a practical ill-conditioned distillation
system. Performance of the algorithm in MOEA toolbox is also
compared with other well-known evolutionary MO optimization
methods upon a benchmark problem.

Index Terms—Evolutionary algorithms, multiobjective opti-
mization, software.

I. INTRODUCTION

M ANY real-world design tasks involve complex optimiza-
tion problems with various competing design specifica-

tions and constraints which are often difficult, if not impossible,
to be solved without the aid of powerful and efficient optimiza-
tion algorithms [1]–[5]. Blessed with the rapid development of
computer technology, the high power of computation and visu-
alization available at the desk nowadays allows the embedding
of computer-aided multiobjective optimization (CAMOO) tech-
nology into a virtual problem-solving environment for sophis-
ticated optimization problems. Built upon a high-performance
global optimization algorithm, such a computational framework
promotes active man-machine interactions and supports the fun-
damental changes from conventional manual tuning process to
automatic search of optimum solutions.

Manuscript received June 19, 2000; revised November 27, 2000 and April 24,
2001. This paper was receommended by Associate Editor E. Santos.

The authors are with Department of Electrical and Computer Engineering,
National University of Singapore, Singapore 119260, Republic of Singapore.

Publisher Item Identifier S 1083-4419(01)05971-4.

Evolutionary algorithm is a global search optimization
technique based on the mechanics of natural selection and
reproduction. It has been found to be very effective in solving
complex multiobjective (MO) optimization problems where
conventional optimization tools fail to work well [6]–[11].
Without the need of linearly combining multiple attributes into
a composite scalar objective function, evolutionary algorithms
incorporate the concept of Pareto’s optimality or modified
selection schemes to evolve a family of solutions along the
tradeoff surface. Such a global optimization method has been
applied to many real-world applications including treatment
of cancer in medical fields [12], control engineering design
in power systems [13], physiological processes of biological
plants [14], and recognition of Chinese characters [15]. Several
surveys are available for more information of evolutionary
algorithms in MO optimization, e.g., [16]–[20].

Although evolutionary algorithms are powerful for MO opti-
mization, the users require certain programming expertise with
considerable time and effort in order to write a computer pro-
gram for implementing the often sophisticated algorithm ac-
cording to their need. This work could be tedious and needs
to be done before users can start their design task for which
they should really be engaged in. A simple solution is to get
ready-to-use evolutionary optimization toolbox, which is often
developed for general purposes but has the potential to be ap-
plied to any specific application. Generally there are two types
of evolutionary algorithm toolboxes for MO optimization that
are available in the market. 1) The key functions of the evo-
lutionary algorithm are coded separately in the toolbox where
the users can build their own programs by calling the relevant
functions. 2) A ready-to-use toolbox where users merely write a
“model” file that specifies the objective function corresponding
to his/her particular optimization problem, and plugs the file into
the toolbox for immediate solutions.

Existing evolutionary algorithm toolboxes include the
genetic and evolutionary algorithm toolbox (GEATbx) for use
with Matlab [21], which is developed by Pohlheim [22] and is
commercially available. The toolbox is modular and contains
some evolutionary functions that could be used for users’
own programs. The interface with GEATbx can be performed
via either command-line interpretation or simple GUIs. This
toolbox is, however, not freely available and the current version
of GEATbx (Version 1.92) provides no support for multiob-
jective optimization. The genetic algorithms for optimization
toolbox (GAOT) developed by Houck et al., [23] in North
Carolina State University requires the simulation settings to
be specified in different variables, where reference materials
may be needed to remind users of the functions of those
variables storing the settings. Besides the need of inputting a

1083–4419/01$10.00 © 2001 IEEE

538 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 4, AUGUST 2001

long string of variables before each simulation, the toolbox
also provides limited support for MO optimization and has no
easy access to graphical displays for results analysis. Similar
to GEATbx, GAOT requires users to be familiar with Matlab
and evolutionary computing in order to understand the various
functions as well as to specify the decision variables in the
relevant -files, since these toolboxes are mainly text-based
driven with limited GUI supports. The FlexToolGA developed
from Flexible Intelligence Group [24] is a ready-to-use toolbox
which is also implemented in Matlab and is commercially
available. Although this toolbox supports GUIs, some of the
settings need to be entered via text-based commands. More-
over, the toolbox does not fully support MO optimization in
identifying the entire tradeoffs for multiple conflicting criteria
problems.

Addressing the need of a more user-friendly and compre-
hensive evolutionary algorithm toolbox for MO optimization,
this paper presents a global optimization toolbox that is
built upon the MOEA algorithm proposed in [25]. The
MOEA toolbox, which is freely available for download at
http://vlab.ee.nus.edu.sg/~kctan/moea.htm, is ready for im-
mediate use with minimal knowledge needed in Matlab or
evolutionary computing. It is fully equipped with interactive
GUIs and powerful graphical displays for ease-of-use and
efficient visualization of different simulation results, and hence
provides excellent supports for decision-making and optimiza-
tion in complex real-world optimization applications. Besides
the ability of evolving a family of nondominated solutions
along the observed Pareto optimal front, each of the objective
components can have different goal settings or preferences
to guide the optimization for individual specifications rather
than pre-weighting the multiobjective functions manually.
The toolbox also contains various analysis tools for users to
compare, examine or analyze different results or tradeoffs at
anytime during the simulation.

This paper is organized as follows: Section II presents a
general architecture for computer-aided multiobjective opti-
mization. The role of MOEA toolbox for global optimization
and better decision-making in CAMOO is also illustrated. The
design of MOEA toolbox which includes a brief description
of various useful features as well as further developments for
real-time optimization are also presented in Section II. The
effectiveness of the toolbox is demonstrated via the design
optimization problem of a practical ill-conditioned distillation
control application in Section III. Section IV shows the perfor-
mance comparison results among the MOEA toolbox and other
well-known evolutionary methods upon a benchmark problem.
Conclusions and future development of the toolbox are drawn
in Section V.

II. ROLES AND FEATURES OFMOEA TOOLBOX

A. Background

In general, multiobjective optimization seeks to optimize a
vector of noncommensurable and often competing objectives or
cost functions. In other words, it tends to find a decision variable
set for

(1)

Fig. 1. Multiobjective Pareto ranking scheme.

where , is the candidate vector with
decision variables and defines the set of candidate vectors;

are the objectives to be minimized.
In the total absence of information for preference of objectives,
Pareto’s dominance is regarded as a useful approach to com-
pare strength or fitness between any two candidate solutions in
MO optimization [7]. For a minimization problem, an objective
vector is said to dominate another objective vector, de-
noted by , iff

and

for some (2)

Solution to the above MO optimization problem is a family of
points known as Pareto optimal solutions, where each objective
component of any point along the Pareto-front can only be im-
proved by degrading at least one of its other objective compo-
nents [26], [27]. To illustrate the concept of Pareto’s optimality,
the Pareto ranking scheme proposed in [18] for a minimization
problem of two objectives and is shown in Fig. 1. As
can be seen, it assigns the same smallest cost for all nondom-
inated strings, while the dominated strings are inversely ranked
according to how many strings in the population dominate them.

B. General Architecture of CAMOO

To promote active man-machine interaction and to support
automatic search of Pareto optimal solutions in MO optimiza-
tion, a general architecture of CAMOO that accommodates
three interactive modules is shown in Fig. 2.

• The human decision-making module that monitors and su-
pervises the overall optimization process.

• The global optimization module that searches for Pareto
optimal solutions automatically.

• The evaluation module that formulates and simulates all
specifications and objective functions corresponding to
the MO optimization problem on-hand.

According to the simulation results in evaluation module
and any optimization guidance such as optional goal and
priority information from decision-making module, the opti-
mization module automates the search toward the global and
Pareto optimal solutions, without the need of formulating a
convex or linearly parameterized objective function. Online

TAN et al.: MULTIOBJECTIVE EVOLUTIONARY ALGORITHM TOOLBOX 539

Fig. 2. A general architecture for computer-aided multiobjective optimization.

optimization progress and simulation results like tradeoffs or
convergence can be displayed graphically and fed back to the
decision-making module. In this way, the overall optimization
process is supervised and monitored closely, where the users
can examine different competing tradeoffs conveniently, adjust
goal settings that are too stringent or generous, or even alter
the objective functions anytime during the simulation if neces-
sary. This man-machine interactive optimization process may
continue until user is satisfied with the required performances
or after all design specifications have been met. The CAMOO
architecture allows the interactive optimization process to be
closely linked to the environment of the applications. Human
decision-makers, for most of the part, are not required to deal
with any details related to the optimization algorithm, which
greatly simplifies the overall design task.

To achieve an efficient CAMOO, a powerful software
package is essential for the optimization module to obtain
the globally optimized solutions. The interactive GUI-based
MOEA optimization toolbox developed under the Matlab
programming environment is thus designed for this purpose.
Matlab is a popular high-performance programming language
used for technical computing. It integrates computation, visual-
ization and programming in an easy-to-use environment, where
problems and solutions can be expressed in familiar mathe-
matical notation. It is chosen as the software environment for
MOEA toolbox implementation due to the following reasons
[23]:

1) it provides many built-in auxiliary functions useful for
function optimization in engineering or nonengineering
applications;

2) it is portable and is efficient for numerical computations;
3) it provides powerful and easy-to-use graphic utilities;
4) it provides Application Program Interface (API) to in-

teract with data and programs that are external to Matlab
environment;

5) it is capable of generating optimized code for embedded
systems, rapid prototyping and hardware-in-the-loop de-
signs.

Although execution speed in Matlab may be slow as compared
to other low-level programming languages like C/C++, function
files in Matlab that require extensive computational effort can be
compiled into “mex” files using software like Matcom [28] for
faster program execution, if so desired.

Fig. 3. GUI window for quick setting of simulation parameters.

C. GUIs of MOEA Toolbox

The MOEA toolbox is developed based upon the technique of
evolutionary computing and the concept of Pareto’s optimality
for effective MO optimization. Interfacing with the toolbox is
through powerful GUI windows. Most simulation settings can
be done by manipulating labeled graphical controls which have
tool tips attached for easy function identification. The toolbox
also provides many help documentations in HTML (HyperText
Markup Language) format as well as simple-file templates
to assist users in writing “model” files. Besides, it is capable of
representing simulation results in various formats, such as text
files or graphical displays for the purpose of results viewing and
analysis. The file-handling capability of the toolbox also allows
users to store or retrieve simulation data. The main features of
the toolbox are summarized as follows.

• Support both single- and multi-objective optimization.
• The ability to focus on finding Pareto optimal solutions

with powerful graphical displays.
• Fixed and dynamic population size for optimal represen-

tation of Pareto-front.
• Handle both hard and soft constraints.
• Goal and priority information for better support of deci-

sion-making in MO optimization.
• Powerful GUIs and easy linking to other program work-

bench.
• Step-by-step guidance to interface with “model” files.
• Comprehensive HTML help files and tutorials.
• Include a simple installation program.

An installation program is included in the toolbox for easy
installation and setup of Matlab search paths. After the installa-
tion, the main toolbox GUI window can be called from Matlab
workspace by the command “begin.” This GUI can be mini-
mized into a smaller window so that it occupies less space on the
screen for easy access. Through the buttons on this GUI, many
other toolbox GUI windows can be easily accessed including
the help files and simulation setup files. There are two types of
setup available in the toolbox, e.g., the “Quick” setup and the
“Guided” setup. The GUI of “Quick” setup is shown in Fig. 3,
which provides all simulation settings, such as the number of ob-
jectives and decision variables, generation and population size,
selection strategy and so forth to be easily accessible within one
GUI window. Fixed and dynamic niching schemes [25], [29] are

540 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 4, AUGUST 2001

Fig. 4. “Guided” setup with loading setup details.

also included in this GUI, which allows sharing distance to be
fixed or estimated adaptively based upon the online population
distribution at each generation. The “Quick” setup also includes
features to incorporate random strings or reuse strings from last
evolution if necessary. Besides, the “model” file or Simulink
[30] can be loaded directly through this GUI to achieve easy
linking between MOEA toolbox and application setups.

For new users who have minor or no experience in setting
up the parameters for simulation, an alternative “Guided” setup
GUI window as shown in Fig. 4 is available to assist them by
going through the whole setup process step-by-step with guid-
ance information provided. The sparse multi-page arrangement
in “Guided” setup also allows more information to be incorpo-
rated into the GUI window. Note that all parameter settings of
“Quick” and “Guided” setups are interlinked, e.g., users may
switch between these two GUI windows anytime as they wish,
where all current settings in one setup window are automat-
ically transferred to another. All settings in these two setups
can also be saved into a file for reloading purpose. From the
“Quick” setup or “Strings” setting in ‘Guided’ setup as shown
in Fig. 5(a), the “Model Parameter Options” GUI window as
shown in Fig. 5(b) can be opened to setup all decision variables
involved in the optimization. Note that the toolbox does not have
a limit on the number of decision variables that it can handle,
although such limit may be imposed by the limited system re-
sources. As shown in Fig. 5(b), settings over every ten decision
variables can be easily accessed through the navigational con-
trols in the toolbox.

Fig. 5(c) shows the “Summation Limits” GUI window, which
is a primitive version of packet distribution method [31] for han-
dling simple constraints with linear decision variables. This GUI
window allows linear constraint specifications of the following
format

...

(3)

where
summation of all decision variables;
lower summation limit;
upper summation limit;
decision variable;
lower limit for decision variable;
upper limit for decision variable;
number of decision variables.

These constraints are automatically coded into the genetic struc-
ture of strings in the simulation, i.e., all strings in the popula-
tion reproduced after the crossover and mutation operations re-
main as feasible strings, which avoids the need of repairing or
rejecting any infeasible strings through specialized genetic op-
erators. Fig. 6 shows the genetic structure as given by

if
else

(4)

The genes in the chromosome represent packets of pre-speci-
fied sizes, , and the value of each gene, , de-
termines the address of the decision variable that the packet is
assigned to. For gene indicates that the packet of size

should contribute its value to theth decision variable. There-
fore the value of theth decision variable is the sum of all the
packets whose gene has the address that is corresponding to it.
The packet distribution method has also been extended to handle
nonlinear type of constraint optimization problems via the ap-
proach of angular transformation [32].

As shown in Fig. 7, the “Objective” setup window that
specifies the setting of objective functions for the optimization
problem can be called from either the “Quick” or ‘”Guided”
setup. Similar to the setting of decision variables, there is no
limit on the number of objectives although such limit may be
imposed by the limited system resources. This GUI window is
built to provide an easy and complete setup for each objective
component involved in the optimization, which includes the
support for setting of goal, priority and hard/soft constraints
[25]. Note that the setting of a single specification (consists of a
set of objective components with goal, priority and constraint)
can also be extended to multiple specifications with logical
“AND”/”OR” operations to accommodate more complex
decision-making in the toolbox as shown in Fig. 7(c).

Fig. 8 shows the “Population Handling” GUI window of the
MOEA toolbox. This GUI window allows strings or decision
variables to be manually edited, removed or replaced by random
ones as necessary. Any string in the population can be selected
with its decision variables to be displayed on the left side of the
window. At each generation, the fitness as well as the decision
variables of the selected string is available for viewing or editing
on the right half of the window. This GUI window is useful for
providing online or off-line results analysis via strings editing,
where users can have better interaction and understanding of
the changing environment in the simulation. Note that strings
for the entire population can also be created via the “Population
Handling” GUI, which could then be saved and reloaded as an
initial population for other setups.

The MOEA toolbox contains various GUIs for graphical dis-
plays, where simulation results can be represented in different

TAN et al.: MULTIOBJECTIVE EVOLUTIONARY ALGORITHM TOOLBOX 541

Fig. 5. Decision variable settings and linear constraint handling.

Fig. 6. General structure of packet representation.

Fig. 7. ”Objective” setup window with setting of goal, priority and logical “AND”/”OR” operations.

542 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 4, AUGUST 2001

Fig. 8. GUI window for strings manipulation.

Fig. 9. Graphical displays of simulation results in MOEA toolbox.

plotting for graphical analysis or visualization. These plottings
can be updated at each generation for which users can interac-
tively manipulate controls to adjust the displays. One of such
GUI windows is shown in Fig. 9, where strings can be arranged
in an ascending order based on any selected optimization cri-
teria. Fig. 10 shows the convergence trace for single- or multi-
objective optimization as well as the number of strings meeting
goal setting at each generation, which gives a quantitative idea
of how the population is evolving over generations. For MO
optimization, the convergence trace is measured by means of
progress ratio [25]. In the sense of evolution progress toward the
direction that is normal to the tradeoff surface formed by the cur-
rent nondominated strings, the progress ratio at generation

is defined as the ratio between the number of nondominated
strings at generation dominatingthe nondominated strings
at generation over the total number of nondominated
strings at generation. This GUI also allows simulation data
such as strings in a population, fitness of strings and progress
ratio to be saved as “mat” file in Matlab or as “text” file to be
loaded by external programs like Microsoft Excel.

The MOEA toolbox also comes with comprehensive online
help files in HTML format, which can be easily accessed via
button/link in each GUI window or menu bar as shown in
Fig. 11. Whenever the help command is called, the relevant
help document will be opened via the default Web browser in
the system. The information contained in the help files include:

• General information on evolutionary algorithms and mul-
tiobjective optimization;

• Step-by-step demonstration of the toolbox;
• Guides to GUIs of the toolbox as well as to writing of

Matlab and Simulink “model” files;
• List of possible error messages and ways of handling

them.

D. Advanced Settings of MOEA Toolbox

The left side of Fig. 12 shows the GUI window for evolu-
tionary parameter settings, where crossover and mutation rates
can be set graphically. There are two methods of selection
available in the toolbox, e.g., roulette wheel and tournament

TAN et al.: MULTIOBJECTIVE EVOLUTIONARY ALGORITHM TOOLBOX 543

Fig. 10. Convergence trace for evolution progress.

Fig. 11. Toolbox link from main window to help file contents.

selection schemes. Three types of mutation operator are pro-
vided in “Mutation Settings” GUI window as shown in the
right side of Fig. 12. The first type is the classical muta-
tion operator, where a gene is randomly mutated if a random
generated number is smaller than the probability of mutation.
The second type is the approximate-number mutation, where
a number of randomly selected genes, equal to the rounded
product of the total number of genes and the probability of
mutation, are mutated randomly.

The third mutation method is called fuzzy boundary local
perturbation (FBLP), which was proposed in [33] as a tool for
reproducing strings to fill up discontinuities among nondomi-
nated strings in forming the Pareto-front for MO optimization.
Each string in FBLP is perturbed in such a way that the resul-
tant string from the perturbation is likely to be situated within
a short distance from the original one. The number of pertur-
bations for each string is related to the status of progress ratio
[33], which is generally large for a small progress ratio and vice

versa. A high progress ratio means that the performance of evo-
lution is improving a lot and is likely to be far away from the
tradeoff. A local search at this stage is less meaningful since
the evolution is less likely to reproduce strings within or near
to the tradeoff region. In contrast, the progress ratio is generally
low when the evolution is approaching the tradeoff, and thus it
is more meaningful to increase the number of perturbations at
this stage in order to obtain more neighboring strings for better
tradeoff representation. The setting of this relation is adjustable
in the toolbox as shown in the right side of Fig. 12. When FBLP
is performed on a string, mutation probability for each gene de-
pends on its position in the respective decision variable. For each
decision variable, the closer the gene to the LSG (Least Signif-
icant Gene), the higher the probability of mutation is assigned
to this gene. By giving a higher chance of mutation for less sig-
nificant genes, perturbed strings are likely to be located within
a short distance from the original string, thereby fulfilling the
purpose of local search in FBLP.

544 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 4, AUGUST 2001

Fig. 12. Settings of evolutionary operators and mutation types.

Fig. 13. Settings of evolutionary operators and sharing distance scaling.

At the stage of “Evolution 2” in “Guided” setup as shown
in the left side of Fig. 13, several advanced evolutionary set-
tings are available. The “niche induction” technique by means
of sharing function [34] is used to evolve an equally distributed
population along the Pareto-front or multiple optima for evolu-
tionary optimization. To avoid the need ofa-priori knowledge
to predefine a sharing distance as required by existing sharing
methods, the toolbox includes a dynamic sharing scheme [25]
which computes suitable sharing distance at each generation
adaptively. Since each decision variable or objective may have
different desired scaling values, the toolbox provides a “Niching
Distance Scaling” GUI window where the scale of each decision
variable or objective can be easily specified as shown in the right
side of Fig. 13. Mating restriction [34], [35] is included in the
toolbox to restrict mating of strings in order to prevent reproduc-
tion of highly unfit strings as well as to maintain the population
diversity. If the mating restriction is enabled, two strings will be
selected for mating if they are located within a certain distance,
e.g., the sharing distance; otherwise a random string is selected
for mating if no such strings are found.

The MOEA toolbox also allows users to load an initial pop-
ulation, generate a new population of random strings or use a
combination of both before any simulations. The initial popula-
tion can be loaded from a file generated from last simulation ses-
sion or entered via the “Population Handling” GUI. As shown
in Fig. 14, the feature of dynamic population size [33] is also in-
cluded in the toolbox, which is particularly useful for automat-
ically estimating an optimal population size at each generation
so as to sufficiently explore the search space as well as to repre-
sent the Pareto-front effectively. Intuitively, it is hard to achieve
a good evolution if the population size is too small due to insuf-
ficient exchange of genetic information. If the population size
is too large, the evolution may take extra computational effort
with greater demands on system resources and simulation time.
The merit of dynamic population is that it avoids the need of
presetting a constant population size that is usually obtained by
repeating the simulation with different population size until a
good solution is found. The toolbox also allows settings in the
GUIs to be saved in a “setup” file for reference or use later in
other simulations, besides having the feature of “crash backup”

TAN et al.: MULTIOBJECTIVE EVOLUTIONARY ALGORITHM TOOLBOX 545

Fig. 14. Population setting with optional feature of dynamic population size.

file that stores all simulation data at each generation for backup
purpose.

E. Writing “Model” File

There are three types of user-written files in the toolbox,
e.g., the “model” file, the “initiator” file and the “streog”
file. According to users’ optimization problem on-hand, the
“model” file that specifies the objective function must be
written in order to determine the fitness function of each
string in the population before any simulation. The MOEA
toolbox sends values of the decoded decision variables to this
“model” file and expects a cost vector to be returned for each
of the strings. The “model” file is also used in “Population
Handling” GUI to allow any manual examination, modification
or re-evaluation of strings of interest in a population. Besides
providing help files in HTML format, several templates for
writing the “model” files are included in the toolbox. There
are also notes, guides and reminders in the form of comments
in each template to assist users in writing the “model” file for
his/her particular optimization problem. The “initiator” file is
optional and is a function or a script that is run once at the
beginning of the simulation. This “initiator” may be used to
initiate a separate graphical display window or to initialize
constants for the simulation. Similarly, the setting of “streog”
file is also optional and is a function or a script that is run at
the end of each generation, which can be useful for plotting
simulation results in graphical display that is generated by the
“initiator” or for producing backup data of the simulation.

Since the MOEA toolbox is written in Matlab, it is capable of
running any “model” file created in Matlab as well as making
use of the versatile functions and resources in Matlab. Users can
also call their own C or Fortran “model” files from Matlab as
if they are built-in functions. This Matlab callable C or For-
tran program is defined as “mex” file [21], which is dynami-
cally linked subroutine that Matlab interpreter can load and ex-
ecute. Details of creating and executing “mex” file are available
in Matlab application program interface guide [21]. The merit
of “mex” file is that it executes faster than its-file equivalent,
and hence reduces the overall simulation time. Alternatively,

Fig. 15. Simulink model of a first-order system (filename: Fstorder).

“model” files can also be written as -file and easily be com-
piled into “mex” file with the help of Matcom [28] for similar
purpose.

The MOEA toolbox is capable of running a model built with
Simulink, which is a GUI-based software in Matlab for mod-
eling, simulation and analysis of dynamic systems. The toolbox
provides a special template containing comments and sample
codes that assist users in creating “model” files for running
Simulink models. There are also various functions that allow

-files to modify the parameters of Simulink functions or to run
the simulation in Simulink. The Simulink model can be loaded
by typing its model name at the Matlab command window be-
fore running the simulation. An “initiator” file can also be used
to load a Simulink model in a new window if none already exists.
For example, consider a Simulink model with step response sim-
ulation of a first-order system as shown in Fig. 15. The model
is saved as a file named “Fstorder.mdl,” and the “initiator” file
that opens this model consists of a command line “Fstorder”.

In the model file, the following lines can be written to de-
scribe the system:

% A sample model file

Time = 1 : 0:1 : 1000;

num = [K];

den = [T\ 1];

set param(“Fstorder/Syst,” . . .

“Numerator,” [‘ [‘ num2str(num) ’] ’], . . .

“Denominator,” [‘ [‘ num2str(den) ’] ’])

sim(“Fstorder,” t, [], []);

“Fstorder” is the name of Simulink “model” file; “Syst” is
the name of blocks that represent the system; “Time” is the sim-
ulation time index; “K” and “T” are the parameters of “num”
and “den” that define the first-order system, respectively. Note
that after each “model” evaluation in Simulink, the step response
data of the first-order system will be returned to the main func-
tion in Matlab, as desired.

F. MOEA Toolbox for Real-Time Optimization

The MOEA toolbox is well suited for global MO optimiza-
tion where different noncommensurable or competing criteria
can be optimized simultaneously without the need of a compro-
mise function. From Simulink and real-time workspace toolbox
[36], the evaluation module in Fig. 2 can be extended easily
for online evaluation and hardware in-the-loop optimization,
if desired. Without loss of generality, Fig. 16 illustrates an
example of real-time control system design governed by the
MOEA toolbox, as an extension from off-line CAMOO as
shown in Fig. 2 to online real-time optimization.

In the extended evaluation module, Simulink is useful for
control system modeling, simulation and controller design. The

546 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 4, AUGUST 2001

Fig. 16. Extended evaluation module for real-time optimization.

controller that is developed via the block diagram of Simulink
can be compiled by real-time workshop toolbox into C/C++
codes, which are then compiled into executable codes for down-
loading onto the hardware. The interface software then initial-
izes the hardware, loads the executable application codes onto
the memory area and initiates the program execution to perform
the real-time control application. At the same time, a set of plant
data is fed back to the real-time workspace via the interface soft-
ware for the evaluation of the objective functions. Intuitively, the
overall design convergence of this architecture is guaranteed if
the convergence of MOEA is faster than the dynamics of the
process, which adds to the challenge of the MOEA toolbox.

Instead of using high-level programming like Matlab or
Simulink block diagrams, fast and efficient low-level programs
and interface boards can also be used to provide the linkage
between MOEA toolbox and control applications. In this case,
the interface software needs to allow controller parameters to
be altered on the interface board in real-time within the toolbox
environment, as well as to allow the real-time response data to
be logged back onto the MOEA toolbox for fitness evaluations
and graphical displays. As recommended in [37], this task
can be conveniently realized with the aid of special hardware
and software system such as dSPACE [38], MIRCOS [39] or
TMS320C40 DSP industry standard card, using an appropriate
analogue input/output module where the card can be sited in a
PC to form a complete standalone dedicated control system.

III. D ESIGN APPLICATION OF A DISTILLATION

CONTROL SYSTEM

To demonstrate the effectiveness and various features in
MOEA toolbox, a practical control design optimization problem
of multiple-input and multiple-output (MIMO) ill-conditioned
distillation system is used as the case study in this section. It
should be noted that the focus here is to illustrate how MOEA
toolbox can easily assist the MO design optimization of a
distillation control system. This control problem was originated
from [40] and was studied later in [41]–[46]. The ordinary

Fig. 17. Typical distillation column control system.

model of the distillation column is shown in Fig. 17, which
consists of multiple inputs (flows: reflux, boilup , distillate

, bottom flow and overhead vapor) and multiple outputs
(compositions and inventories: top composition, bottom
composition , condenser holdup , reboiler holdup ,
pressure).

This control problem usually has no inherent control limita-
tions caused by RHP-zeros, but the plant has poles in or close to
the origin and needs to be stabilized. The RGA-matrix may also
have some large elements for high-purity separations [40]. An-
other complication posed in this design is that the composition
measurements are often expensive and unreliable [41]. Consider
a distillation process in “ ” configuration with two inputs (re-
flux and boilup), and two outputs (product compositions

and). The five-state model of “ ” configuration with
a state-space realization given as

(5)

where denotes the transfer matrix from the inputs (and
) to the outputs (and) respectively. The matrix

and are given in (6) shown at the bottom of the next page.
The above five-state model was obtained via model reduction

of the original model with 82 states [41]. The process to be con-
trolled is a distillation column with reflux flow and boilup as
manipulated inputs and product compositions as outputs. The
model has been scaled such that a magnitude of 1 corresponds
to the following: 0.01 mole fraction units for each output (
and), the nominal feed flow rate for the two inputs (and

) and a 20% change for each disturbance (feed rateand feed
composition).

The set of design specifications for this distillation system
are listed in Table I, which aims to obtain a distillation control
system that meets a set of transient and steady-state performance
requirements, while satisfying certain system constraints such
as actuator saturation. In Table I, and are system outputs,

TAN et al.: MULTIOBJECTIVE EVOLUTIONARY ALGORITHM TOOLBOX 547

TABLE I
DESIGN SPECIFICATIONS FOR THEMIMO I LL-CONDITIONED DISTILLATION SYSTEM

Fig. 18. “Objective Setup” GUI window for the distillation control problem.

while and are actuator outputs of the system. These de-
sign specifications, treated as the design objectives in MO op-
timization, can be easily set via the “Objective Setup” GUI in
the toolbox as shown in Fig. 18. The underlying aim of setting
the priorities in the last column of Table I is to obtain a con-
troller that first stabilizes the system within the actuator satura-
tion limit for hardware implementation. Note that the actuator
saturation is set as a hard constraint reflecting the hard limit of
this performance requirement, which requires no further mini-
mization if the control actions is within the saturation limit.
Having fulfilled these requirements, the system should also sat-
isfy some time domain specifications as defined by the transient

and steady-state responses. Although determination of the pri-
ority settings may be a subjective matter and depends on the per-
formance requirements, ranking the priorities is only optional
and can be ignored for a “minimum-commitment” design [47].
If, however, an engineer commits himself to prioritizing the ob-
jectives, it is a much easier task than pre-weighting the different
design specifications as required by other objective function ag-
gregation approaches.

Fig. 19 shows the overall design block diagram of the distil-
lation control system, where is the command signal, the
error signal, the disturbance signal and the plant output
response. The design task here is to optimize the controller pa-

(6)

548 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 4, AUGUST 2001

Fig. 19. Output feedback control system.

Fig. 20. Graphical displays of progress ratio and ratio of strings meeting goal.

rameters of for the distillation column so that it sat-
isfies all design specifications as listed in Table I. Since MOEA
toolbox is developed under the Matlab programming environ-
ment, users do not need to build the “model” files from scratch,
i.e., any function libraries from any relevant Matlab toolboxes
can be utilized directly for this purpose. For example, the con-
trol system toolbox in Matlab was utilized in this problem to
define the complete MIMO distillation control system, without
the need of writing the entire control block diagram or simula-
tion program.

A full-matrix controller structure with simple 1st-order
transfer function is adopted for this distillation control problem,
which results in a total number of 16 controller parameters or
decision variables given as

where

(7)

Primary settings of the evolutionary design optimization are
shown in Fig. 3, which include the number of design objectives
and decision variables, generation and population size, selection
strategy and so forth. Graphical displays in the toolbox can be

used to observe the performance of the evolution, such as the
convergence trace in the senses of progress ratio as well as the
ratio of strings meeting goal (ratio of number of strings meeting
goal to the population size). As illustrated in Fig. 20, the evo-
lution begins with a zero ratio of strings meeting the goal. This
value grows significantly from generations 10 to 30 and satu-
rates at the value of one indicating all strings had met the goal
setting. This graph shows that all controllers in the final gen-
eration satisfy all the design specifications as listed in Table I.
It can also be observed in Fig. 20 that the progress ratio of the
optimization is relatively high at the initial stage and decreases
asymptotically toward zero as the evolution proceeds or as the
population gets closer to the global tradeoff surface. This con-
vergence feature is useful as an effective performance measure
or stopping criterion for MO optimization.

The tradeoff graph for some of the evolved controllers is il-
lustrated in Fig. 21, where each line represents a solution found
by the optimization. The heavily crossing lines in Fig. 21 sug-
gests that the solutions are nondominated and tradeoff against
each other. To further illustrate the relationship among different
specifications, the nondominated strings are plotted in Fig. 22
in terms of objective 4 (Otr) and objective 7 (Ecp). As can be
seen, although all the plotted strings are nondominated to each
other for objectives 1 to 7, they are not necessary tradeoff to each
other with respect to objectives 4 and 7 since the tradeoff may

TAN et al.: MULTIOBJECTIVE EVOLUTIONARY ALGORITHM TOOLBOX 549

Fig. 21. Tradeoff graph for the design of MIMO ill-conditioned distillation control system.

Fig. 22. Population distribution in the objective domain of Otr (4) and Ecp (7).

occur at other pair(s) of objective functions. If only strings that
are tradeoff to each other with respect to objectives 4 and 7 are
plotted, it can be observed that the tracking overshoot (Otr) per-
formance deteriorates as more stringent bounds on the coupling
steady-state error (Ecp) are demanded as shown by the solid line
in Fig. 22. Further investigations between any other objectives
can also be carried out in a similar manner.

The quantitative assessments of correlation coefficient and
the slope of the least-square line can be used to provide statis-
tical information of the evolving decision variables toward the
objective components. For any decision variableand objec-
tive component , the correlation coefficient and slope of
the least-squares line for a population size of are de-
fined as [48]

and, (8)

where

(9)

and (10)

(11)

The correlation coefficient gives a quantitative measure
of how strongly a decision variable and an objective com-
ponent is related. The value of is between and .
A value near to the upper limit of indicates a substantial
positive relationship, whereas an close to the lower limit

550 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 4, AUGUST 2001

(a) (b)

Fig. 23. Analysis of decision variables in correlation and sensitivity. (a) Population distribution offx ; f g and (b) population distribution offx ; f g.

(a) (b)

Fig. 24. Distribution of the controller parameters: (a) 2-D and (b) 3-D.

of suggests a prominent negative relationship. In the case
where decision variable and objective component are not
correlated to each other, the value of is found. For the
slope of the least-squares line , its magnitude represents the
measure of sensitivity of the decision variableto the objec-
tive component . The larger the magnitude of , the more
sensitive the decision variable is.

For example, consider the population distribution of the
optimized controller parameters for the distillation control
problem, the of and are
and , respectively; and their magnitude of
are and , respectively. This shows
that with respect to objective component(tracking overshoot
or Otr), decision variable is more correlated than ; and
both decision variables have a negative relationship with.
Therefore slight increment of decision variable should be
given more concern than the increment ofwhen performing
manual reduction of . On the other hand, as compared to,
the decision variable is more sensitive to the objective.
This indicates that a little variation of will lead to a large
change in . The visual impression of the correlation and
sensitivity of and is shown in Fig. 23, which

is useful for designers to manually change the controller pa-
rameters to achieve better closed-loop performance according
to his/her particular needs.

The MOEA toolbox also supports other types of plotting in
2- or 3-dimension, such as the graph of decision variable versus
decision variable as shown in Fig. 24. In the 3-dimensional plot,
the -axis represents the rank value where smaller rank im-
plies better or fitter candidate string. These graphical displays
are useful for better understanding and visualization of decision
variable distributions as well as contribution of each decision
variable to the overall optimization performance. These tools
are also helpful in “Population Handling” GUI window which
allows further manual modification or revaluation of any strings
during or after the evolution process, as one desires. Fig. 25
shows the transient and steady-state responses of tracking and
regulation performances for both channels in the system with
two patterns of command signals. It can be seen that all the
time-domain performance requirements as specified by objec-
tives of 3–7 in Table I have been met successfully.

To illustrate the robustness of the distillation system in the
presence of disturbance, a sinusoidal input acting as the distur-
bance signal (in Fig. 19) was applied to the system. The dis-

TAN et al.: MULTIOBJECTIVE EVOLUTIONARY ALGORITHM TOOLBOX 551

(a) (b)

Fig. 25. Toolbox optimized output responses for the MIMO distillation system. (a) Output response for command signal= [1 0] and (b) output response for
command signal= [0 1] .

(a) (b)

Fig. 26. Sinusoidal disturbance and its attenuated signals for the MIMO distillation system. (a) Disturbance attenuation for outputy and (b) disturbance
attenuation for outputy .

turbance input has an amplitude and angular frequency of 1 volt
and 0.05 rad/s, respectively. The sinusoidal and its attenuated
signal for all the Pareto optimal controllers are shown by the
dashed and solid line in Fig. 26, respectively. Clearly, the dis-
turbance has been attenuated substantially, with about five and
ten times in gain reduction of the original sinusoidal for output

and , respectively.
Another powerful feature of the toolbox is that all the goal,

priority and constraint settings can be conveniently examined
and modified at any time during the evolution process. This
can be easily performed with the embedded GUIs through three
simple steps: pausing the evolution process, changing the set-
tings and resuming the optimization process. For example, user
may want to change the goal setting for actuator limit (Act) from
1 volt to 0.2 volt after a certain number of generations. Fig. 27 il-
lustrates the effects of the evolution process upon further modifi-
cation of this goal setting after the tradeoff shown in Fig. 21. Due
to the sudden change of a tighter goal setting, none of the strings
manage to meet all design specifications as shown in Fig. 27(a).

After continuing the evolution for another two generations, the
tradeoff moves toward satisfying the actuator limit (Act) at the
expense of minor performance degradation for other objectives
as shown in Fig. 27(b). In Fig. 27(c), the evolution continues and
again leads to the satisfaction of all the goal settings by having
less room for further improvements of other objectives (e.g., the
fifth and seventh objectives) or having less Pareto optimal solu-
tions as compared to the tradeoff found in Fig. 21. Clearly, this
online interaction feature is useful where users can monitor or
modify the design at any time during the evolution so as to suit
their special needs, without the need of restarting the entire de-
sign or evolution cycles.

IV. PERFORMANCECOMPARISONS OFMOEA TOOLBOX

In this section, performance of the MOEA algorithm in the
toolbox and other seven evolutionary MO optimization methods
are compared upon a benchmark MO optimization problem. The
biased-space minimization problem proposed in [49] is used

552 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 4, AUGUST 2001

(a) (b)

(c)

Fig. 27. Effects of the evolution upon online modification of goal setting, (a) Stringent the goal setting of Act from 1volt to 0.2 volt, (b) After two generations,
(c) After another two generations.

here, which is to minimize a two-objective function and is math-
ematically defined as:

(12)

(13)

(14)

(15)

where the values and is minimum and maximum
value of the variable , while and is the minimum
and maximum value that the functioncan take. Pareto-optimal
region occurs when takes the value of , which happens
when [49]. As shown in Fig. 28,
the shaded region represents the unfeasible space in the objec-
tive domain while the bold line is the Pareto-optimal curve for
the two-objective biased-space minimization problem. This test
function is chosen since it has a large and nonlinear tradeoff
curve that challenges the MO evolutionary algorithm’s ability
to find and maintain the entire Pareto-front uniformly. Besides,
qualitative optimization performance for this problem can be
easily visualized and compared. As stated in [49], the difficulty
of this MO optimization problem can be introduced by the pa-
rameter which controls the bias in the search space. The den-
sity of solution away from the Pareto-front is large when .

Fig. 28. Pareto-optimal curve in the objective domain.

Therefore random-like search methods are likely to face diffi-
culties in finding the tradeoff in this problem. Similar to [49],
the parameter values of

and are used for the
study here.

There are many performance measures for MO optimization
proposed in the literatures, e.g., [50]–[52]. In general, these
measures compare the performance of evolutionary optimiza-
tion in: (1) to attain the Pareto-front, e.g., from [52], error

TAN et al.: MULTIOBJECTIVE EVOLUTIONARY ALGORITHM TOOLBOX 553

Fig. 29. Box plot based onC measure. Each rectangle, refers to the measure ofC(XXX ;XXX –), represented by box plots arranged left to right, betweeni algorithm
and algorithms ranging from 1 to 8. The scale is�0:05 at the bottom and 1.05 at the top of each rectangle.

ratio and generational distance from [51]; (2) to spread the non-
dominated strings along the available Pareto-front, e.g., size of
space coveredSSCfrom [52], Spread from [27]. The measures
of andSSCproposed by Zitzler and Thiele [52] are employed
here to access the performance of different evolutionary algo-
rithms, since these two measures consider both cases (1) and
(2), and are generally applicable without the need of pre-finding
the actual or best found Pareto optimal solutions.

The MOEA algorithm in the toolbox has been compared with
various evolutionary MO optimization methods, which include
(1) VEGA from [53]; (2) MIMOGA from [54]; (3) HLGA from
[55]; (4) NPGA from [3]; (5) MOGA from [7]; (6) NSGA from
[27]; and (7) SPEA from [52]. These methods are chosen for
comparison since they have been frequently referenced by other
researchers. In addition, these algorithms consist of different
type of evolutionary methods for MO optimization and some
of them have been applied to real-world applications, especially
MOGA. These algorithms have been indexed according to the
above sequence, where the MOEA algorithm is assigned the last
index number (8).

Since the control parameter settings may be different from
one algorithm to another, the setting of these parameter values
are based upon two principles in this study: (1) the value of the
parameters that are commonly used by several algorithms are
identical to those algorithms and, (2) the value of the parame-
ters that are used in specific algorithms are decided based upon
the recommended values from their original literature. Fitness
sharing [7] is applied to all methods that use sharing scheme
in their algorithms. The sharing distance for MOGA, NSGA,
NPGA and HLGA are set as 0.01 in the normalized space since
the population size was set at 100. No sharing parameter set-
tings are required by SPEA [52] and MOEA in the toolbox. The
MOEA applies dynamic sharing scheme where sharing distance
can be computed adaptively at each generation. Tournament se-
lection scheme with tournament size of 2 is used in MOGA,
SPEA and MOEA as suggested in their original literatures. The
Pareto tournament selection scheme with % of the
population size was used in NPGA for tight and complete pop-
ulation distribution as recommended in [26].

All methods under comparison were implemented with the
same common sub-functions in Matlab on an Intel Pentium II
450 MHz processor. Each of the simulation was terminated au-

tomatically at the time of 120 sec, in the same platform that
is free from other computation or being interrupted by other
programs. Here, 30 independent simulation runs have been per-
formed for each method so as to study the consistency and ro-
bustness of the algorithms. Note that randomly generated popu-
lation with an initial population size of 100 is used for all the
30 simulations except MIMOGA and SPEA. For MIMOGA
and SPEA, combinations of , namely , where

, is used as similar to the setting in [52]. For the
measure ofSSCthat works on the normalized fitness space, the
standard ranges in fitness space of and
are chosen, which are determined based upon the space covered
by the Pareto-front.

The performance measure of for the comparison
sets between algorithmsand where, , are
shown in Fig. 29. Box plots [56] are used to summarize the
sample distributions of 30 independent runs per each case,
which has been applied in [52] to visualize the distribution
of simulation data efficiently. Each box plot represents the
distribution of a sample population where a thick horizontal
line within the box encodes the median, while the upper and
lower ends of the box are the upper and lower quartiles. Dashed
appendages illustrate the spread and shape of distribution, and
dots represent the outside values. In each rectangle containing
box plots, the sequence of box plots from the left to right is
based on the indexes of each algorithm under compared. As
can be seen, for always takes the value of
zero since two identical populations cannot dominate each
other. There is also no clear evidence that any of the population
had completely dominated any other population in all the
30 runs since there appears no cases where
and , for . However, MOEA appears
to dominate other algorithms in most of the cases, besides
being dominated the least by other algorithms as shown in the
rectangle of – .

Fig. 30 summarizes the performance of each algorithm with
respect to the measure ofSSC. The higher the value ofSSC, the
larger the dominated volume covered by the Pareto-front and
hence the better is the MO optimization performance. As can
be seen, the MOEA (indexed 8) has the highest value with best
performance in spreading strings along the Pareto-front as com-
pared to other methods. Besides MOEA, it can be observed that

554 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 4, AUGUST 2001

Fig. 30. Box plots on the size of space covered (SSC).

Fig. 31. Best selected distribution of nondominated strings with respect toSSC.

MIMOGA (indexed 2), SPEA (indexed 7) and MOGA (indexed
5) also perform satisfactorily for this performance measure.

Fig. 31 unveils the distribution of final evolved nondomi-
nated strings in the objective domain. These distributions are
best selected among the 30 independent runs with respect to
the measure ofSSC. In general, the purpose of producing these
figures is to visually inspect the performances of various al-
gorithms in terms of their final population distribution, i.e., to
evaluate the performances qualitatively. By inspection, it is no-
ticeable that MOEA produces more nondominated strings along
the Pareto-front, and the final tradeoffs found by the MOEA
is better and more uniformly distributed as compared to other
methods in literature. Besides having many interactive GUIs and
useful features, the MOEA toolbox presented in this paper also
shows excellent performance for MO optimization as illustrated
in Fig. 31.

V. CONCLUSIONS ANDFUTURE WORK

A general computer-aided MO optimization architecture
that promotes active man-machine interaction and supports the
automatic search of optimum solutions for MO optimization

has been discussed in the paper. A powerful GUI-based MOEA
toolbox has been presented which applies the concept of
Pareto’s optimality for uniform distribution of nondominated
solutions along the tradeoff. The toolbox is also fully equipped
with many useful features for better decision-making in MO
optimization, and is capable of representing simulation results
in various formats, such as text files or interactive graphical dis-
plays for results viewing and analysis. It is freely available for
download at http://vlab.ee.nus.edu.sg/~kctan/moea.htm, which
is ready for immediate use with minimal knowledge needed in
evolutionary computing. Practical usefulness of the toolbox has
been demonstrated through the MO design optimization of an
MIMO distillation control application. Extensive simulations
for the MOEA toolbox and other well-known evolutionary
methods upon a benchmark problem have also been performed.
The performances are compared both statistically and quali-
tatively, which shows that the MOEA toolbox is effective for
MO optimization with more nondominated solutions evenly
distributed along the final Pareto-front.

Although the MOEA toolbox presented in this paper is
powerful and ready for immediate use, other features are
currently being incorporated into the toolbox. Besides MOEA,

TAN et al.: MULTIOBJECTIVE EVOLUTIONARY ALGORITHM TOOLBOX 555

other nonevolutionary-based algorithms such as simulated
annealing [57] and Tabu search [58] are being included in the
toolbox to provide users with a wider choice of optimization
tools. To achieve faster program execution and to make the
toolbox independent to Matlab, conversion of the toolbox into
standalone executable software is also underway. For this, a
link to Matlab will be provided in the toolbox so that users
can easily access any built-in auxiliary functions in Matlab if
necessary. Other toolbox development includes the extension
for real-time learning and optimization, such that online
communication with real-world applications is possible.

REFERENCES

[1] E. M. Beale,Introduction to Optimization. New York: Wiley , 1988.
Wiley-Interscience Series in Discrete Mathematics and Optimization.

[2] A. Grace, Optimization Toolbox User’s Guide. Natick, MA: The
MathWorks, Inc., 1992.

[3] J. Horn and N. Nafpliotis, “Multiobjective Optimization Using the Niche
Pareto Genetic Algorithm,” Univ. Illinois, Urbana, IlliGAL Rep. 93 005,
1993.

[4] G. W. Greenwood, X. S. Hu, and J. G. D’Ambrosio, “Fitness func-
tions for multiple objective optimization problems: Combining prefer-
ences with Pareto rankings,” inFoundations of Genetic Algorithms, R.
K. Belew and M. D. Vose, Eds. San Mateo, California: Morgan Kauf-
mann, 1997, pp. 437–455.

[5] J. Lis and A. E. Eiben, “A multi-sexual genetic algorithm for multi-
objective optimization,” inIEEE Int. Conf. Evolutionary Computation,
1997, pp. 59–64.

[6] M. P. Fourman, “Compaction of symbolic layout using genetic algo-
rithms,” in Proc. of the First Int. Conf. Genetic Algorithms, 1985, pp.
141–153.

[7] C. M. Fonseca and P. J. Fleming, “Genetic algorithm for multiobjective
optimization, formulation, discussion and generalization,” inProc. of
the Fifth Int. Conf. Genetic Algorithms, S. Forrest, Ed.. San Mateo, CA,
1993, pp. 416–423.

[8] P. B. Wilson and M. D. Macleod, “Low implementation cost IIR dig-
ital filter design using genetic algorithms,” inIEE/IEEE Workshop on
Natural Algorithms in Signal Processing, Chelmsford, U.K., 1993, pp.
4/1–4/8.

[9] W. Jakob, M. Gorges-Schleuter, and C. Blume, “Application of genetic
algorithms to task planning and learning,” inParallel Problem Solving
from Nature, 2nd Workshop, R. Männer and B. Nanderick, Eds. Ams-
terdam, The Netherlands, 1992, pp. 291–300. Lecture Notes in Com-
puter Science.

[10] H. Adeli and N. T. Cheng, “Augmented Lagrangian genetic algorithm
for structural optimization,”J. Aerosp. Eng., vol. 7, pp. 104–118, 1994.

[11] B. J. Ritzel, J. W. Eheart, and S. Ranjithan, “Using genetic algorithms
to solve a multi objective groundwater pollution containment problem,”
Water Resources Res., vol. 30, pp. 1589–1603, 1994.

[12] O. C. Haas, K. J. Burnham, and J. A. Mills, “On improving physical
selectivity in the treatment of cancer: A systems modeling and opti-
mization approach,”Contr. Eng. Practice, vol. 5, no. 12, pp. 1739–1745,
1997.

[13] M. Reformat, E. Kuffel, D. Woodford, and W. Pedrycz, “Application of
genetic algorithms for control design in power systems,” inProc. Inst.
Elect. Eng., Generation, Transm. Distrib., vol. 145, 1998, pp. 345–354.

[14] T. Morimoto, T. Torii, and Y. Hashimoto, “Optimal control of physiolog-
ical processes of plants in a green plant factory,”Contr. Eng. Practice,
vol. 3, no. 4, pp. 505–511, 1995.

[15] D. S. Lin and J. J. Leou, “A genetic algorithm approach to chinese hand-
writing normalization,”IEEE Trans. Syst. Man, Cybern. B, vol. 27, pp.
999–1007, Dec. 1997.

[16] C. A. Coello-Coello, “An empirical study of evolutionary techniques for
multiobjective optimization in engineering design,” Ph.D. dissertation,
Dept. Comput. Sci., Tulane Univ., New Orleans, LA, 1996.

[17] , “A comprehensive survey of evolutionary-based multiobjective
optimization techniques,”Int. J. Knowl. Inform. Syst., vol. 1, no. 3, pp.
269–308, 1999.

[18] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary algo-
rithms in multiobjective optimization,”Evol. Comput., vol. 3, no. 1, pp.
1–16, 1995.

[19] D. A. Van Veldhuizen and G. B. Lamont, “Multiobjective evolutionary
algorithms: Analyzing the state-of-the art,”Evol. Comput., vol. 8, no. 2,
pp. 125–147, 2000.

[20] E. Zitzler and L. Thiele, “Multiobjective optimization using evolu-
tionary algorithms—A comparative case study,” inParallel Problem
Solving from Nature V, A. E. Eiben, Ed. Amsterdam, , The Nether-
lands: Springer-Verlag, 1998, pp. 292–301.

[21] Using MATLAB. Natick, MA: The MathWorks, Inc., 1998, ver. 5.
[22] Genetic and Evolutionary Algorithm Toolbox (GEATbx) for

Use with Matlab, H. Pohlheim. (1998). [Online]. Available:
http://www/geatbx.com

[23] C. Houck, J. Joines, and M. Kay. (1995) A genetic algorithm for
function optimization: A Matlab implementation. North Carolina
State Univ., Raleigh. [Online]. Available: http://www.ie.ncsu.edu/mi-
rage/GAToolBox/gaot/

[24] Flex Tool (GA) (1999). [Online]. Available: http://www.flextool.com/
[25] K. C. Tan, T. H. Lee, and E. F. Khor, “Evolutionary algorithms with goal

and priority information for multi-objective optimization,”Congr. Evol.
Comput., vol. 1, pp. 106–113, 1999.

[26] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched Pareto genetic
algorithm for multiobjective optimization,”Proc. First IEEE Conf. Evo-
lutionary Computation, vol. 1, pp. 82–87, 1994.

[27] N. Srinivas and K. Deb, “Multiobjective optimization using nondomi-
nated sorting in genetic algorithms,”Evol. Comput., vol. 2, no. 3, pp.
221–248, 1994.

[28] MATCOM. Natick, MA: The MathWorks, Inc., 1999.
[29] D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing for

multi-modal function optimization,” inProc. Second Int. Conf. on Ge-
netic Algorithms. Hillsdale, NJ, 1987, pp. 41–49.

[30] Using Simulink Version 3. Natick, MA: The MathWorks, Inc., 1999,
ver. 5. The Math Works, Inc.

[31] K. C. Tan, T. H. Lee, D. Khoo, and E. F. Khor, “Gene domain con-
straint handling technique via genetic structure design,” inCongr. Evol.
Comput., Seoul, Korea, 2001, pp. 693–703.

[32] K. C. Tan, T. H. Lee, E. F. Khor, C. M. Heng, and D. Khoo, “Nonlinear
constraint handling technique via angular transformation,” inGenetic
and Evolutionary Computation Conf. (GECCO), San Francisco, CA,
2001, pp. 665–662.

[33] K. C. Tan, T. H. Lee, and E. F. Khor, “Incrementing multi-objective
evolutionary algorithms: Performance studies and comparisons,” in
First Int. Conf. Evolutionary Multi-Criteria Optimization (EMO’01),
Zürich, Switzerland, 2001, pp. 111–125. Springer-Verlag Lecture Notes
on Computer Science 1993.

[34] K. Deb and D. E. Goldberg, “An investigation on niche and species for-
mation in genetic function optimization,” inProc. Third Int. Conf. Ge-
netic Algorithms. San Mateo, CA, 1989, pp. 42–50.

[35] C. M. Fonseca, “Multiobjective genetic algorithms with application to
control engineering problems,” Ph.D. thesis, Dept. Automat. Contr. Syst.
Eng., Univ. Sheffield, U.K., 1995.

[36] Real-Time Workshop: For Use with Simulink. Natick, Ma: The Math
Works, Inc., 1995.

[37] P. Schroder, B. Green, N. Grum, and P. J. Fleming, “On-line genetic
auto-tuning of mixed H/H optimal magnetic bearing controllers,”Int.
Conf. Control, vol. 2, pp. 1123–1128, 1998.

[38] H. Hanselmann, “Automotive control: From concept to experiment to
product,” presented at the IEEE Int. Conf. Control Application and
System Design, Dearborn, MI, 1996.

[39] S. Rebeschieß, “MIRCOS—Microcontroller-based real time control
system toolbox for use with Matlab/Simulink,” inIEEE Int. Conf.
Control Application and System Design, Hawaii, 1999, pp. 267–272.

[40] G. Zames, “On the input-output stability of time-varying nonlinear feed-
back systems, parts I and II,”IEEE Trans. Automat. Contr., vol. AC-11,
no. 2 & 3, pp. 228–238 and 465–476, 1966.

[41] S. Skogestad, M. Morari, and J. Doyle, “Robust control of ill-condi-
tioned plants: High-purity distillation,”IEEE Trans. Automat. Contr.,
vol. 33, pp. 672–681, Dec. 1989.

[42] I. Postlethwaite, J. L. Lin, and D. W. Gu, “Robust control of a high purity
distillation column using mu-k iteration,” inProc. 30th Conf. Decision
and Control, 1991, pp. 1586–1590.

[43] T. Zhou and H. Kimura, “Controller design of ill-conditioned plant using
robust stability degree assignment,” inProc. 30th Conf. Decision and
Control, 1991, pp. 1591–1595.

[44] F. Diggelen and K. A. Glover, “Hadamard weighted loop shaping de-
sign procedure,” inProc. 31st Conf. Decision and Control, 1992, pp.
2193–2198.

[45] D. J. Limebeer, E. M. Kasenally, and J. D. Perkins, “On the design of
robust two degree of freedom controllers,”Automatica, vol. 29, no. 1,
pp. 157–168, 1993.

556 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 4, AUGUST 2001

[46] P. Lundström, S. Skogestad, and J. C. Doyle, “Two-degree-of-freedom
controller design for an ill-conditioned distillation process using�-syn-
thesis,” IEEE Trans. Control Syst. Technol., vol. 7, no. 1, pp. 12–21,
1999.

[47] K. X. Guan and K. J. MacCallum, “Adopting a minimum commitment
principle for computer aided geometric design systems,” inArtificial
Intelligence in Design’96, J. S. Gero and F. Sudweeks, Eds. Norwell,
MA, 1996, pp. 623–639.

[48] J. Devore and R. Peck,Statistics: The Exploration and Analysis of
Data. London, U.K.: Duxbury, 1997.

[49] K. Deb, “Multi-objective genetic algorithms: Problem difficulties and
construction of test problem,”Evol. Comput., vol. 7, no. 3, pp. 205–230,
1999.

[50] C. M. Fonseca and P. J. Fleming, “On the performance assessment
and comparison of stochastic multiobjective optimizers,” inParallel
Problem Solving from Nature, H.-M. Voigt, W. Ebeling, I. Rechenberg,
and H.-P. Schwefel, Eds. Berlin, Germany: Springer, 1996, pp.
584–593.

[51] D. A. Van Veldhuizen and G. B. Lamont, “Multiobjective evolutionary
algorithm test suites,” inProc. Symp. Applied Computing, San Antonio,
TX, 1999, pp. 351–357.

[52] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A
comparative case study and the strength Pareto approach,”IEEE Trans.
Evol. Comput., vol. 3, no. 4, pp. 257–271, 1999.

[53] J. D. Schaffer, “Multiple-objective optimization using genetic algo-
rithm,” in Proc. First Int. Conf. Genetic Algorithms, 1985, pp. 93–100.

[54] T. Murata and H. Ishibuchi, “MOGA: Multi-objective genetic algo-
rithms,” in IEEE Proc. Congr. Evolutionary Computation, vol. 1, 1995,
pp. 289–294.

[55] P. Hajela and C. Y. Lin, “Genetic search strategies in multicriterion op-
timal design,”J. Struct. Optim., vol. 4, pp. 99–107, 1992.

[56] J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A. Turkey,
Graphical Methods for Data Analysis. Pacifica, CA: Wadsworth &
Brooks/Cole, 1983.

[57] P. Czyzak and A. Jaszkiewicz, “Pareto simulated annealing,” inProc.
XIIth Int. Conf. Multiple Criteria Decision Making, G. Fandel and T.
Gal, Eds, 1997, pp. 297–307.

[58] M. P. Hansen, “Tabu search in multiobjective optimization: MOTS,” pre-
sented at the Proc. MCDM’97, Cape Town, South Africa, 1997.

K. C. Tan (S’95–A’97–M’99) received the B.Eng.
degree (with First Class Honors) in electronics and
electrical engineering 1994 and the Ph.D. degree in
1997, both from the University of Glasgow, U.K.

He was with the Centre for Systems & Control and
the Evolutionary Computing Group, Glasgow, before
joining the Department of Electrical and Computer
Engineering at the National University of Singapore
as an Assistant Professor in 1997. His research inter-
ests include computational intelligence, evolutionary
multiobjective optimization, intelligent control and

engineering designs optimization. He has more than 60 technical publications
in these areas, and has served as program committee or organizing member for
many international conferences. He is currently an Associate Editor for theIn-
stitution of Engineersjournal, Singapore.

Tong H. Lee (M’88) received the B.A. degree (with
First Class Honors) in the Engineering Tripos from
Cambridge University, U.K., in 1980 and the Ph.D.
degree from Yale University, New Haven, CT, in
1987.

He is a Professor in the Department of Electrical
and Computer Engineering, National University of
Singapore. He is also currently Head of the Control
Engineering Section in this Department, and the
Vice-Dean (Research) in the Faculty of Engineering.
His research interests are in the areas of adaptive

systems, knowledge-based control, intelligent mechatronics and computational
intelligence. He has published extensively in these areas, and is currently an
Associate Editor forAutomatica; Control Engineering Practice(an IFAC
journal); the International Journal of Systems Science(Taylor and Francis,
London, U.K.); andMechatronics(Oxford, U.K., Pergamon Press).

Dr. Lee was a recipient of the Cambridge University Charles Baker Prize
in Engineering. He is an Associate Editor for the IEEE TRANSACTIONS ON

SYSTEMS, MAN, AND CYBERNETICS.

D. Khoo received the B.Eng. degree (with First Class Honors) in electronic and
electrical engineering from University of Strathclyde, Glasgow, U.K., in 1998.

He is currently a Research Engineer in the Department of Electrical and Com-
puter Engineering at the National University of Singapore. His research interests
include evolutionary algorithm implementation and genetic coding of optimiza-
tion problems.

E. F. Khor was born in Malaysia in 1974. He
received the B.Eng. degree (with First Class Honors)
in electrical engineering from the University of
Technology (UTM), Malaysia, in 1998. He has
been pursuing the Ph.D. degree in the Centre
for Intelligent Control, National University of
Singapore, since 1998. His research interests include
evolutionary multiobjective optimization, artificial
intelligence, stochastic optimization and design
automation in control engineering.

